By Topic

Label-Free Plasmonic Immunosensing for Plasmodium in a Whole Blood Lysate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Sang-Yeon Cho ; Electr. Eng. Dept., New Mexico State Univ., Las Cruces, NM, USA ; Briscoe, J.L. ; Hansen, I.A. ; Smith, J.K.
more authors

In this paper, we report an experimental demonstration of malaria pathogen detection in a whole blood lysate using plasmonic nanostructures. The plasmon sensor utilizes extraordinary optical transmission through a nanostructure to directly probe antibody-antigen interactions. The measured refractive index sensitivity of the nanostructured sensor is 378 nm per refractive index unit in the visible range. The surface chemistry reported here provides highly site directed and stable antibody immobilization. To validate the observed response of the optical sensor, positive and negative control tests were performed. Results confirm that a refractive index change induced by the interaction between immobilized antibodies and malaria parasites is successfully detected by the fabricated sensor. The demonstrated plasmonic sensor is a compact, highly sensitive, cost effective, selective diagnostic tool for many portable biosensing applications, such as point-of-care diagnostics.

Published in:

Sensors Journal, IEEE  (Volume:14 ,  Issue: 5 )