By Topic

Application of network calculus to guaranteed service networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
J. -Y. Le Boudec ; Ecole Polytech. Fed. de Lausanne, Switzerland

We use previous network calculus results to study some properties of lossless multiplexing as it may be used in guaranteed service networks. We call network calculus a set of results that apply min-plus algebra to packet networks. We provide a simple proof that shaping a traffic stream to conform to a burstiness constraint preserves the original constraints satisfied by the traffic stream. We show how all rate-based packet schedulers can be modeled with a simple rate latency service curve. Then we define a general form of deterministic effective bandwidth and equivalent capacity. We find that call acceptance regions based on deterministic criteria (loss or delay) are convex, in contrast to statistical cases where it is the complement of the region which is convex. We thus find that, in general, the limit of the call acceptance region based on statistical multiplexing when the loss probability target tends to 0 may be strictly larger than the call acceptance region based on lossless multiplexing. Finally, we consider the problem of determining the optimal parameters of a variable bit rate (VBR) connection when it is used as a trunk, or tunnel, given that the input traffic is known. We find that there is an optimal peak rate for the VBR trunk, essentially insensitive to the optimization criteria. For a linear cost function, we find an explicit algorithm for the optimal remaining parameters of the VBR trunk

Published in:

IEEE Transactions on Information Theory  (Volume:44 ,  Issue: 3 )