Cart (Loading....) | Create Account
Close category search window
 

Error bounds for functional approximation and estimation using mixtures of experts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zeevi, A.J. ; Inf. Syst. Lab., Stanford Univ., CA, USA ; Meir, R. ; Maiorov, V.

We examine some mathematical aspects of learning unknown mappings with the mixture of experts model (MEM). Specifically, we observe that the MEM is at least as powerful as a class of neural networks, in a sense that will be made precise. Upper bounds on the approximation error are established for a wide class of target functions. The general theorem states that ||f-fn||p⩽c/nr d/ for f∈Wpr(L) (a Sobolev class over [-1,1]d), and fn belongs to an n-dimensional manifold of normalized ridge functions. The same bound holds for the MEM as a special case of the above. The stochastic error, in the context of learning from independent and identically distributed (i.i.d.) examples, is also examined. An asymptotic analysis establishes the limiting behavior of this error, in terms of certain pseudo-information matrices. These results substantiate the intuition behind the MEM, and motivate applications

Published in:

Information Theory, IEEE Transactions on  (Volume:44 ,  Issue: 3 )

Date of Publication:

May 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.