By Topic

Automated Segmentation of Prostate MR Images Using Prior Knowledge Enhanced Random Walker

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Ang Li ; BMIT Res. Group, Univ. of Sydney, Sydney, NSW, Australia ; Changyang Li ; Xiuying Wang ; Eberl, S.
more authors

Prostate cancer is the second most common cause of cancer deaths in males. Accurate prostate segmentation from magnetic resonance (MR) images is critical to the diagnosis and treatment of prostate cancer. Automated prostate segmentation is challenging due to the variety in shapes and sizes of the prostate. Furthermore, the expected boundaries of ROIs are often indistinct, while heterogeneity concurrently exists within the ROIs. To address these challenges, we propose an automated approach that incorporates the local intensity features by random walker (RW) algorithm and global probability knowledge from an atlas to better describe unique characteristics of the prostate in MR images. We formulated a new RW weight function to take into account atlas probabilities and intensity differences. The prior knowledge from the atlas probability map not only reflects the statistical shape approximation of the prostate but also provides confinement and guidance for RW segmentation. Our approach was validated and compared with the conventional RW algorithm on segmenting 30 3-T prostate MR volumes. The experimental results indicated that our approach with an average DSC of 80.7±5.1%, outperformed that of the conventional RW (average DSC = 71.9±9.1%) and several other reported methods in terms of DSC accuracy and robustness.

Published in:

Digital Image Computing: Techniques and Applications (DICTA), 2013 International Conference on

Date of Conference:

26-28 Nov. 2013