Cart (Loading....) | Create Account
Close category search window
 

Methods for Nuclei Detection, Segmentation, and Classification in Digital Histopathology: A Review—Current Status and Future Potential

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Irshad, H. ; Univ. Joseph Fourier, Grenoble, France ; Veillard, A. ; Roux, L. ; Racoceanu, D.

Digital pathology represents one of the major evolutions in modern medicine. Pathological examinations constitute the gold standard in many medical protocols, and also play a critical and legal role in the diagnosis process. In the conventional cancer diagnosis, pathologists analyze biopsies to make diagnostic and prognostic assessments, mainly based on the cell morphology and architecture distribution. Recently, computerized methods have been rapidly evolving in the area of digital pathology, with growing applications related to nuclei detection, segmentation, and classification. In cancer research, these approaches have played, and will continue to play a key (often bottleneck) role in minimizing human intervention, consolidating pertinent second opinions, and providing traceable clinical information. Pathological studies have been conducted for numerous cancer detection and grading applications, including brain, breast, cervix, lung, and prostate cancer grading. Our study presents, discusses, and extracts the major trends from an exhaustive overview of various nuclei detection, segmentation, feature computation, and classification techniques used in histopathology imagery, specifically in hematoxylin-eosin and immunohistochemical staining protocols. This study also enables us to measure the challenges that remain, in order to reach robust analysis of whole slide images, essential high content imaging with diagnostic biomarkers and prognosis support in digital pathology.

Published in:

Biomedical Engineering, IEEE Reviews in  (Volume:7 )

Date of Publication:

2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.