Cart (Loading....) | Create Account
Close category search window
 

Intensity Noise Properties of Mid-Infrared Injection Locked Quantum Cascade Lasers: I. Modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Simos, H. ; Dept. of Electron., Technologichal Educ. Inst. of Piraeus, Athens, Greece ; Bogris, A. ; Syvridis, D. ; Elsasser, W.

In this paper, we numerically investigate the effect of optical injection locking on the noise properties of mid-infrared quantum cascade lasers. The analysis is carried out by means of a rate equation model, which takes into account the various noise contributions and the injection of the master laser. The obtained results indicate that the locked slave laser may operate under reduced intensity noise levels compared with the free running operation. In addition, optimization of the locking process leads to further suppression of the intensity noise when the slave laser is biased close to the free-running threshold current. The main factors that significantly affect the locking process and the achievable noise levels are the injected optical power and the master-slave frequency detuning.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:50 ,  Issue: 2 )

Date of Publication:

Feb. 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.