Cart (Loading....) | Create Account
Close category search window
 

A Decoupling Approach to Classical Data Transmission Over Quantum Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dupuis, F. ; ETH Zurich, Zürich, Switzerland ; Szehr, O. ; Tomamichel, M.

Most coding theorems in quantum Shannon theory can be proven using the decoupling technique. To send data through a channel, one guarantees that the environment gets no information about it. Uhlmann's theorem then ensures that the receiver must be able to decode. While a wide range of problems can be solved this way, one of the most basic coding problems remains impervious to a direct application of this method, sending classical information through a quantum channel. We will show that this problem can, in fact, be solved using decoupling ideas, specifically by proving a dequantizing theorem, which ensures that the environment is only classically correlated with the sent data. Our techniques naturally yield a generalization of the Holevo-Schumacher-Westmoreland theorem to the one-shot scenario, where a quantum channel can be applied only once.

Published in:

Information Theory, IEEE Transactions on  (Volume:60 ,  Issue: 3 )

Date of Publication:

March 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.