Cart (Loading....) | Create Account
Close category search window
 

Analysis of a dual-receiver node with high fault tolerance for ultrafast OTDM packet-switched shuffle networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yu, B.Y. ; Dept. of Electr. Eng., Princeton Univ., NJ, USA ; Glesk, I. ; Prucnal, P.R.

In this paper, we present a high-performance dual-receiver transparent optical node configuration suitable for two-connected multihop transparent optical networks operating at ultrafast bit rates. The steady-state behavior of optical shuffle networks is analyzed with this configuration and a minimum-loss node configuration. Deflection routing is employed as the means for contention resolution. Both analytical results and simulation results are presented on the network performance in terms of network throughput and delay. We also propose modified routing schemes for network fault tolerance. Applying both store-and-forward and deflection routing techniques, the networks can operate without packet loss in the presence of faults

Published in:

Lightwave Technology, Journal of  (Volume:16 ,  Issue: 5 )

Date of Publication:

May 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.