By Topic

Design of Millimeter-Wave Bandpass Filter Using Electric Coupling of Substrate Integrated Waveguide (SIW)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sai Wai Wong ; Sch. of Electron. & Inf. Eng., South China Univ. of Technol., Guangzhou, China ; Kai Wang ; Zhi-Ning Chen ; Qing-Xin Chu

A millimeter-wave (mmW) bandpass filter (BPF) using substrate integrated waveguide (SIW) is proposed in this work. A BPF with three resonators is formed by etching slots on the top metal plane of the single SIW cavity. The filter is investigated with the theory of electric coupling mechanism. The design procedure and design curves of the coupling coefficient (K) and quality factor (Q) are given and discussed here. The extracted K and Q are used to determine the filter circuit dimensions. In order to prove the validity, a SIW BPF operating at 140 GHz is fabricated in a single circuit layer using low temperature co-fired ceramic (LTCC) technology. The measured insertion loss is 1.913 dB at 140 GHz with a fractional bandwidth of 13.03%. The measured results are in good agreement with simulated results in such high frequency.

Published in:

Microwave and Wireless Components Letters, IEEE  (Volume:24 ,  Issue: 1 )