By Topic

Neural network modelling of a 200 MW boiler system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Irwin, G. ; Dept. of Electr. & Electron. Eng., Queen''s Univ., Belfast, UK ; Brown, M. ; Hogg, B. ; Swidenbank, E.

A feedforward neural network is trained on noisy data from a validated computer simulation of a 200 MW oil fired, drum-type turbogenerator unit at Ballylumford power station in Northern Ireland. Local nonlinear models, based on a multilayer perceptron with one hidden layer, are shown to give comparable predictive results to those obtained from linear multivariable ARMAX models. Neural modelling issues like the dimension of the input vector, training with noisy data, training algorithms and model validation are highlighted and discussed. A global nonlinear neural network boiler model is developed and shown to produce significantly improved predictions of the plant outputs across the complete operating range. It is concluded that neural networks can constitute a powerful tool for nonlinear modelling and identification of industrial plant

Published in:

Control Theory and Applications, IEE Proceedings -  (Volume:142 ,  Issue: 6 )