By Topic

Self-organization of spiking neurons using action potential timing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ruf, B. ; Inst. fur Theor. Phys., Graz Univ., Austria ; Schmitt, M.

We propose a mechanism for unsupervised learning in networks of spiking neurons which is based on the timing of single firing events. Our results show that a topology preserving behavior quite similar to that of Kohonen's self-organizing map can be achieved using temporal coding. In contrast to previous approaches, which use rate coding, the winner among competing neurons can be determined fast and locally. Our model is a further step toward a more realistic description of unsupervised learning in biological neural systems. Furthermore, it may provide a basis for fast implementations in pulsed VLSI

Published in:

Neural Networks, IEEE Transactions on  (Volume:9 ,  Issue: 3 )