By Topic

Fast numerical integration of relaxation oscillator networks based on singular limit solutions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Linsay, P.S. ; Plasma Fusion Center, MIT, Cambridge, MA, USA ; Wang, D.L.

Relaxation oscillations exhibiting more than one time scale arise naturally from many physical systems. When relaxation oscillators are coupled in a way that resembles chemical synapses, we propose a fast method to numerically integrate such networks. The numerical technique, called the singular limit method, is derived from analysis of relaxation oscillations in the singular limit. In such a limit, system evolution gives rise to time instants at which fast dynamics take place and intervals between them during which slow dynamics take place. A full description of the method is given for a locally excitatory globally inhibitory oscillator network (LEGION), where fast dynamics, characterized by jumping which leads to dramatic phase shifts, is captured in this method by iterative operation and slow dynamics is entirely solved. The singular limit method is evaluated by computer experiments, and it produces remarkable speedup compared to other methods of integrating these systems. The speedup makes it possible to simulate large-scale oscillator networks

Published in:

Neural Networks, IEEE Transactions on  (Volume:9 ,  Issue: 3 )