Cart (Loading....) | Create Account
Close category search window

Topology constraint free fuzzy gated neural networks for pattern recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chandrasekaran, V. ; KCS Comput. Services Private Ltd., South Melbourne, Vic., Australia ; Zhi-Qiang Liu

A novel topology constraint free neural network architecture using a generalized fuzzy gated neuron model is presented for a pattern recognition task. The main feature is that the network does not require weight adaptation at its input and the weights are initialized directly from the training pattern set. The elimination of the need for iterative weight adaptation schemes facilitates quick network set up times which make the fuzzy gated neural networks very attractive. The performance of the proposed network is found to be functionally equivalent to spatio-temporal feature maps under a mild technical condition. The classification performance of the fuzzy gated neural network is demonstrated on a 12-class synthetic three dimensional (3-D) object data set, real-world eight-class texture data set, and real-world 12 class 3-D object data set. The performance results are compared with the classification accuracies obtained from a spatio-temporal feature map, an adaptive subspace self-organizing map, multilayer feedforward neural networks, radial basis function neural networks, and linear discriminant analysis. Despite the network's ability to accurately classify seen data and adequately generalize validation data, its performance is found to be sensitive to noise perturbations due to fine fragmentation of the feature space. This paper also provides partial solutions to the above robustness issue by proposing certain improvements to various modules of the proposed fuzzy gated neural network

Published in:

Neural Networks, IEEE Transactions on  (Volume:9 ,  Issue: 3 )

Date of Publication:

May 1998

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.