Cart (Loading....) | Create Account
Close category search window
 

Advanced neural-network training algorithm with reduced complexity based on Jacobian deficiency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guian Zhou ; Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ, USA ; Jennie Si

We introduce an advanced supervised training method for neural networks. It is based on Jacobian rank deficiency and it is formulated, in some sense, in the spirit of the Gauss-Newton algorithm. The Levenberg-Marquardt algorithm, as a modified Gauss-Newton, has been used successfully in solving nonlinear least squares problems including neural-network training. It outperforms the basic backpropagation and its variations with variable learning rate significantly, but with higher computation and memory complexities within each iteration. The mew method developed in this paper is aiming at improving convergence properties, while reducing the memory and computation complexities in supervised training of neural networks. Extensive simulation results are provided to demonstrate the superior performance of the new algorithm over the Levenberg-Marquardt algorithm

Published in:

Neural Networks, IEEE Transactions on  (Volume:9 ,  Issue: 3 )

Date of Publication:

May 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.