By Topic

Recurrent neural-network training by a learning automaton approach for trajectory learning and control system design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. K. Sudareshan ; Dept. of Electr. & Comput. Eng., Arizona Univ., Tucson, AZ, USA ; T. A. Condarcure

We present a training approach using concepts from the theory of stochastic learning automata that eliminates the need for computation of gradients. This approach also offers the flexibility of tailoring a number of specific training algorithms based on the selection of linear and nonlinear reinforcement rules for updating automaton action probabilities. The training efficiency is demonstrated by application to two complex temporal learning scenarios, viz, learning of time-dependent continuous trajectories and feedback controller designs for continuous dynamical plants. For the first problem, it is shown that training algorithms can be tailored following the present approach for a recurrent neural net to learn to generate a benchmark circular trajectory more accurately than possible with existing gradient-based training procedures. For the second problem, it is shown that recurrent neural-network-based feedback controllers can be trained for different control objectives

Published in:

IEEE Transactions on Neural Networks  (Volume:9 ,  Issue: 3 )