By Topic

An RNN-based prosodic information synthesizer for Mandarin text-to-speech

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sin-Horng Chen ; Dept. of Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Shaw-Hwa Hwang ; Yih-Ru Wang

A new RNN-based prosodic information synthesizer for Mandarin Chinese text-to-speech (TTS) is proposed in this paper. Its four-layer recurrent neural network (RNN) generates prosodic information such as syllable pitch contours, syllable energy levels, syllable initial and final durations, as well as intersyllable pause durations. The input layer and first hidden layer operate with a word-synchronized clock to represent current-word phonologic states within the prosodic structure of text to be synthesized. The second hidden layer and output layer operate on a syllable-synchronized clock and use outputs from the preceding layers, along with additional syllable-level inputs fed directly to the second hidden layer, to generate desired prosodic parameters. The RNN was trained on a large set of actual utterances accompanied by associated texts, and can automatically learn many human-prosody phonologic rules, including the well-known Sandhi Tone 3 F0-change rule. Experimental results show that all synthesized prosodic parameter sequences matched quite well with their original counterparts, and a pitch-synchronous-overlap-add-based (PSOLA-based) Mandarin TTS system was also used for testing of our approach. While subjective tests are difficult to perform and remain to be done in the future, we have carried out informal listening tests by a significant number of native Chinese speakers and the results confirmed that all synthesized speech sounded quite natural

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:6 ,  Issue: 3 )