Cart (Loading....) | Create Account
Close category search window
 

An improved method for the design of FIR quadrature mirror-image filter banks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hua Xu ; Nortel, Ottawa, Ont., Canada ; Wu-Sheng Lu ; Antoniou, A.

A new method for the design of general finite-duration impulse response (FIR) quadrature mirror-image filter (QMF) banks that eliminates the computation of large matrices is proposed. The design problem is formulated to include low-delay QMF banks, which are highly desirable in some applications. The paper concludes with design results and comparisons that show that conventional QMF banks can be designed with only a fraction of the computational effort required by a method due to Chen and Lee (1992). On the other hand, in the case of low-delay QMF banks, the proposed method can increase the stopband attenuation substantially compared with what can be achieved by existing methods

Published in:

Signal Processing, IEEE Transactions on  (Volume:46 ,  Issue: 5 )

Date of Publication:

May 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.