By Topic

Effects of thermalization on Q-switched laser properties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Degnan, J.J. ; Lab. for Terrestrial Phys., NASA Goddard Space Flight Center, Greenbelt, MD, USA ; Coyle, D.B. ; Kay, R.B.

The conventional rate equations for a Q-switched laser are augmented to explicitly include the effects of time- and level-dependent pumping, thermalization among the sublevels in the upper and lower multiplets, and multiplet relaxation in a homogeneously broadened four-level laser medium. To make the numerical computations more generally valid, we introduce a number of dimensionless variables. We show that the initial set of five coupled differential equations can be reduced to a simple set of two coupled equations for the inversion density and photon flux. Via numerical modeling, we have investigated the manner in which both thermalization and lower multiplet relaxation affect Nd:YAG laser characteristics such as output energy and temporal waveform. Our numerical results confirm earlier predictions that the Q-switched Nd:YAG laser output energy increases monotonically by a factor of 3.33 as one progresses from the assumption of slow to rapid thermalization and by an additional factor of 1.46 if one further assumes a terminal multiplet relaxation which is fast relative to the resonator photon decay time. We also find that the laser pulsewidth is substantially broadened when the resonator photon decay time is comparable to the thermalization, and to a lesser extent, the terminal multiplet relaxation times

Published in:

Quantum Electronics, IEEE Journal of  (Volume:34 ,  Issue: 5 )