By Topic

Longitudinal spatial hole burning and associated nonlinear gain in gain-clamped semiconductor optical amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
J. L. Pleumeekers ; Dept. of Phys., Fed. Inst. of Technol., Lausanne, Switzerland ; M. -A. Dupertuis ; T. Hessler ; P. E. Selbmann
more authors

The longitudinal spatial hole burning (LSHB) in gain-clamped semiconductor optical amplifiers (GCSOAs) is investigated by means of a numerical model, which is based on position-dependent rate equations for the carrier density and the propagation equations for the optical power. The simulation results show that the carrier densities are nonuniformly distributed within the active layer of GCSOAs. The nonuniformity can be large, especially for high currents and optical signal powers near the saturation. It is found that the LSHB induces a gain nonlinearity, which causes interchannel cross talk when GCSOAs are used in wavelength division multiplexing (WDM) applications. In order to reduce this gain nonlinearity, two methods are analyzed: the use of low resistivity devices and the use of unbalanced Bragg mirror reflectivities

Published in:

IEEE Journal of Quantum Electronics  (Volume:34 ,  Issue: 5 )