By Topic

Adaptive AR modeling of nonstationary time series by means of Kalman filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Arnold, M. ; Inst. of Med. Stat., Comput. Sci. & Documentation, Friedrich-Schiller-Univ., Jena, Germany ; Milner, X.H.R. ; Witte, H. ; Bauer, R.
more authors

An adaptive on-line procedure is presented for autoregressive (AR) modeling of nonstationary multivariate time series by means of Kalman filtering. The parameters of the estimated time-varying model can be used to calculate instantaneous measures of linear dependence. The usefulness of the procedures in the analysis of physiological signals is discussed in two examples: first, in the analysis of respiratory movement, heart rate fluctuation, and blood pressure, and second, in the analysis of multichannel electroencephalogram (EEG) signals. It was shown for the first time that in intact animals the transition from a normoxic to a hypoxic state requires tremendous short-term readjustment of the autonomic cardiac-respiratory control. An application with experimental EEG data supported observations that the development of coherences among cell assemblies of the brain is a basic element of associative learning or conditioning.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:45 ,  Issue: 5 )