Cart (Loading....) | Create Account
Close category search window
 

A Broadcast Approach for Fading Wiretap Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yingbin Liang ; Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., Syracuse, NY, USA ; Lifeng Lai ; Poor, H.V. ; Shamai, S.

A (layered) broadcast approach is studied for the fading wiretap channel without the channel state information (CSI) at the transmitter. Two broadcast schemes, based on superposition coding and embedded coding, respectively, are developed to encode information into a number of layers and use stochastic encoding to keep the corresponding information secret from an eavesdropper. The layers that can be successfully and securely transmitted are determined by the channel states to the legitimate receiver and the eavesdropper. The advantage of these broadcast approaches is that the transmitter does not need to know the CSI to the legitimate receiver and the eavesdropper, but the scheme still adapts to the channel states of the legitimate receiver and the eavesdropper. Three scenarios of block fading wiretap channels with stringent delay constraints are studied, in which either the legitimate receiver's channel, the eavesdropper's channel, or both channels are fading. For each scenario, the secrecy rate that can be achieved via the broadcast approach developed in this paper is derived, and the optimal power allocation over the layers (or the conditions on the optimal power allocation) is also characterized. A notion of probabilistic secrecy, which characterizes the probability that a certain secrecy rate of decoded messages is achieved during one block, is also introduced and studied for scenarios when the eavesdropper's channel is fading. Numerical examples are provided to demonstrate the impact of the CSI at the transmitter and the channel fluctuations of the eavesdropper on the average secrecy rate. These examples also demonstrate the advantage of the proposed broadcast approach over the compound channel approach.

Published in:

Information Theory, IEEE Transactions on  (Volume:60 ,  Issue: 2 )

Date of Publication:

Feb. 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.