Cart (Loading....) | Create Account
Close category search window
 

Probabilistic Forecasts of Wind Power Generation Accounting for Geographically Dispersed Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tastu, J. ; Dept. of Appl. Math. & Comput. Sci., Tech. Univ. of Denmark, Lyngby, Denmark ; Pinson, P. ; Trombe, P.-J. ; Madsen, H.

Forecasts of wind power generation in their probabilistic form are a necessary input to decision-making problems for reliable and economic power systems operations in a smart grid context. Thanks to the wealth of spatially distributed data, also of high temporal resolution, such forecasts may be optimized by accounting for spatio-temporal effects that are so far merely considered. The way these effects may be included in relevant models is described for the case of both parametric and non-parametric approaches to generating probabilistic forecasts. The resulting predictions are evaluated on the real-world test case of a large offshore wind farm in Denmark (Nysted, 165 MW), where a portfolio of 19 other wind farms is seen as a set of geographically distributed sensors, for lead times between 15 minutes and 8 hours. Forecast improvements are shown to mainly come from the spatio-temporal correction of the first order moments of predictive densities. The best performing approach, based on adaptive quantile regression, using spatially corrected point forecasts as input, consistently outperforms the state-of-the-art benchmark based on local information only, by 1.5%-4.6%, depending upon the lead time.

Published in:

Smart Grid, IEEE Transactions on  (Volume:5 ,  Issue: 1 )

Date of Publication:

Jan. 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.