Cart (Loading....) | Create Account
Close category search window
 

Wavelet-based statistical signal processing using hidden Markov models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Crouse, M.S. ; Dept. of Electr. & Comput. Eng., Rice Univ., Houston, TX, USA ; Nowak, R.D. ; Baraniuk, R.G.

Wavelet-based statistical signal processing techniques such as denoising and detection typically model the wavelet coefficients as independent or jointly Gaussian. These models are unrealistic for many real-world signals. We develop a new framework for statistical signal processing based on wavelet-domain hidden Markov models (HMMs) that concisely models the statistical dependencies and non-Gaussian statistics encountered in real-world signals. Wavelet-domain HMMs are designed with the intrinsic properties of the wavelet transform in mind and provide powerful, yet tractable, probabilistic signal models. Efficient expectation maximization algorithms are developed for fitting the HMMs to observational signal data. The new framework is suitable for a wide range of applications, including signal estimation, detection, classification, prediction, and even synthesis. To demonstrate the utility of wavelet-domain HMMs, we develop novel algorithms for signal denoising, classification, and detection

Published in:

Signal Processing, IEEE Transactions on  (Volume:46 ,  Issue: 4 )

Date of Publication:

Apr 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.