Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

GNSS-Based Model-Free Sea Surface Height Estimation in Unknown Sea State Scenarios

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kegen Yu ; Sch. of Civil & Environ. Eng., Univ. of New South Wales, Sydney, NSW, Australia ; Rizos, C. ; Dempster, A.G.

Estimating sea surface height (SSH) based on Global Navigation Satellite System (GNSS) signal measurements in the presence of a rough sea surface is a challenging problem. This paper presents a model-free SSH estimation method to handle this challenging problem. The concept of power ratio is introduced that is defined as the ratio of the correlation power at the desired code phase over the peak correlation power. This desired code phase corresponds to the peak correlation power of reflected signal when the sea surface is perfectly smooth. A power-ratio-based method is presented to estimate the delay of the reflected signal relative to the direct signal, which is then used to estimate the SSH. Two cost functions are defined to estimate the desired power ratio and the SSH through minimizing the cost functions. A low-altitude airborne experiment was conducted and both direct and reflected GNSS signals were collected. The airborne experimental data were processed to generate delay waveforms (correlation power versus code delay). Applying the experimental data to the proposed method demonstrated that the error of mean SSH estimation can be of the order of decimeter in the presence of significant wave height of about 4 m. The main advantage of the proposed method is that it does not require any a priori knowledge of the sea state information or any theoretical model. Thus, the proposed method is not affected by the modeling errors or uncertainties.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:7 ,  Issue: 5 )