By Topic

Bird-SDPS: A Migratory Birds' Spatial Distribution Prediction System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yuanchun Zhou ; Comput. Network Inf. Center, Beijing, China ; Jing Shao ; Xuezhi Wang ; Ze luo
more authors

Species distribution modeling is an important ecological research task that has received a great deal of interest. There are several single model packages and applications available for species distribution analysis. This paper introduces Bird-SDPS, a Prediction System for Migratory Birds' Spatial Distribution, which is an extensible system for birds' spatial distribution prediction. The Bird-SDPS uses birds' GPS tracking data and remote sensing data as input to build multiple distribution models, which are implemented by different programming languages. And the system provides online access and visualization functions. In order to store large dataset of remote sensing data, we design a hybrid storage structure based on HBase. We extensively evaluate our system using a real-world GPS dataset collected from 90 wild birds over 3 years. We show that the system can conduct birds' distribution prediction based on multiple models, and our hybrid data storage modes can outperform the traditional storage modes of files.

Published in:

eScience (eScience), 2013 IEEE 9th International Conference on

Date of Conference:

22-25 Oct. 2013