Cart (Loading....) | Create Account
Close category search window

State Estimation and Voltage/VAR Control in Distribution Network With Intermittent Measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Deshmukh, S. ; Dept. of Electr. & Comput. Eng., Kansas State Univ., Kansas City, KS, USA ; Natarajan, B. ; Pahwa, A.

Reactive power injection in smart grid distribution networks via distributed generators is envisioned to play a vital role in voltage/VAR support. In this paper, we integrate the three aspects of voltage/VAR support: modeling, state estimation and network control in a single framework. Firstly, we develop an input to state nonlinear dynamic model that incorporates power flow equations along with load and distributed generation (DG) forecasts. Then, considering an extended Kalman filter (EKF) approach for nonlinear state estimation, we analyze the impact of dropped packets on stability of estimation process. Finally, we apply separation principle locally around some known state estimates, to design a nonlinear model predictive control (NMPC) based voltage/VAR support strategy. The control problem aims to minimize the aggregate reactive power injected by DG with the following constraints: 1) voltage regulation; 2) phase imbalance correction; and 3) maximum and minimum reactive power injection by individual generators. Considering computational complexity incurred in search for the optimal solution for large scale nonlinear control problems, we propose a successive time varying linear (STVL) approximation to our voltage/VAR control problem. The control framework approach and the analytical results presented in this paper are validated by simulating a radial distribution network as an example.

Published in:

Smart Grid, IEEE Transactions on  (Volume:5 ,  Issue: 1 )

Date of Publication:

Jan. 2014

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.