By Topic

On-Line Video Event Detection by Constraint Flow

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Suha Kwak ; Dept. of Comput. Sci. & Eng., POSTECH, Pohang, South Korea ; Bohyung Han ; Joon Hee Han

We present a novel approach in describing and detecting the composite video events based on scenarios, which constrain the configurations of target events by temporal-logical structures of primitive events. We propose a new scenario description method to represent composite events more fluently and efficiently, and discuss an on-line event detection algorithm based on a combinatorial optimization. For this purpose, constraint flow-a dynamic configuration of scenario constraints-is first generated automatically by our scenario parsing algorithm. Then, composite event detection is formulated by a constrained discrete optimization problem, whose objective is to find the best video interpretation with respect to the constraint flow. Although the search space for the optimization problem is prohibitively large, our on-line event detection algorithm based on constraint flow using dynamic programming reduces the search space dramatically, handles preprocessing errors effectively, and guarantees a globally optimal solution. Experimental results on natural videos demonstrate the effectiveness of our algorithm.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:36 ,  Issue: 6 )