By Topic

Reinforcement Learning Output Feedback NN Control Using Deterministic Learning Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bin Xu ; Sch. of Autom., Northwestern Polytech. Univ., Xi'an, China ; Chenguang Yang ; Zhongke Shi

In this brief, a novel adaptive-critic-based neural network (NN) controller is investigated for nonlinear pure-feedback systems. The controller design is based on the transformed predictor form, and the actor-critic NN control architecture includes two NNs, whereas the critic NN is used to approximate the strategic utility function, and the action NN is employed to minimize both the strategic utility function and the tracking error. A deterministic learning technique has been employed to guarantee that the partial persistent excitation condition of internal states is satisfied during tracking control to a periodic reference orbit. The uniformly ultimate boundedness of closed-loop signals is shown via Lyapunov stability analysis. Simulation results are presented to demonstrate the effectiveness of the proposed control.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:25 ,  Issue: 3 )