By Topic

Analysis of the Effect of Vignetting on MIMO Optical Wireless Systems Using Spatial OFDM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mondal, M.R.H. ; Dept. of Electr. & Comput. Syst. Eng., Monash Univ., Clayton, VIC, Australia ; Armstrong, J.

The performance of pixelated multiple-input mul-tiple-output optical wireless communication systems can be impaired by vignetting, which is the gradual fall-off in illumination at the edges of a received image. This paper investigates the effect of vignetting for a pixelated system using spatial orthogonal frequency division multiplexing (OFDM). Our analysis shows that vignetting causes attenuation and intercarrier interference (ICI) in the spatial frequency domain. MATLAB simulations indicate that for a given constellation size, spatial asymmetrically clipped optical OFDM (SACO-OFDM) is more robust to vignetting than spatial dc biased optical OFDM (SDCO-OFDM). Moreover, for the case of SDCO-OFDM, the very large zeroth subcarrier causes severe ICI in its neighbourhood causing flattening of the bit error rate (BER) curves. We show that this BER floor can be eliminated by leaving some of the lower spatial frequency subcarriers unused. The BER performance can also be improved by applying a vignetting estimation and equalization scheme. Finally, it is shown that equalized SACO-OFDM with 16-QAM has the same overall data rate as equalized SDCO-OFDM using 4-QAM, but requires less optical power.

Published in:

Lightwave Technology, Journal of  (Volume:32 ,  Issue: 5 )