By Topic

Correlation-sensitive adaptive sequence detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kavcic, A. ; Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Moura, J.M.F.

In high density magnetic recording, noise samples corresponding to adjacent signal samples are heavily correlated as a result of front-end equalizers, media noise, and signal nonlinearities combined with nonlinear filters to cancel them. This correlation significantly deteriorates the performance of detectors at high densities. In this paper, we propose a novel sequence detector that is correlation sensitive and adaptive to the nonstationary signal sample statistics. We derive the correlation-sensitive maximum likelihood detector. It can be used with any Viterbi-like receiver (e.g., partial response maximum likelihood, fixed delay tree search, multilevel decision feedback equalization) that relies on a tree/trellis structure. Our detector adjusts the metric computation to the noise correlation statistics. Because these statistics are nonstationary, we develop an adaptive algorithm that tracks the data correlation matrices. Simulation results are presented that show the applicability of the new correlation-sensitive adaptive sequence detector

Published in:

Magnetics, IEEE Transactions on  (Volume:34 ,  Issue: 3 )