By Topic

Clustering-Based Discriminant Analysis for Eye Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shuo Chen ; Dept. of Comput. Sci., New Jersey Inst. of Technol., Newark, NJ, USA ; Chengjun Liu

This paper proposes three clustering-based discriminant analysis (CDA) models to address the problem that the Fisher linear discriminant may not be able to extract adequate features for satisfactory performance, especially for two class problems. The first CDA model, CDA-1, divides each class into a number of clusters by means of the k-means clustering technique. In this way, a new within-cluster scatter matrix Swc and a new between-cluster scatter matrix Sbc are defined. The second and the third CDA models, CDA-2 and CDA-3, define a nonparametric form of the between-cluster scatter matrices N-Sbc. The nonparametric nature of the between-cluster scatter matrices inherently leads to the derived features that preserve the structure important for classification. The difference between CDA-2 and CDA-3 is that the former computes the between-cluster matrix N-Sbc on a local basis, whereas the latter computes the between-cluster matrix N-Sbc on a global basis. This paper then presents an accurate CDA-based eye detection method. Experiments on three widely used face databases show the feasibility of the proposed three CDA models and the improved eye detection performance over some state-of-the-art methods.

Published in:

Image Processing, IEEE Transactions on  (Volume:23 ,  Issue: 4 )