By Topic

Magnetic resonance imaging gradient coil design by combining optimization techniques with the finite element method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
F. Shi ; Dept. of Electr. & Comput. Eng., Worcester Polytech. Inst., MA, USA ; R. Ludwig

In this paper, the optimization techniques of complex method, steepest descent, and conjugate gradient are investigated in terms of their convergence behaviors. The conjugate gradient method is then combined with finite element analysis techniques to develop a magnetic resonance imaging (MRI) Gz gradient coil design strategy which maximizes the field linearity within a specified region of interest. It is found that conjugate gradient optimization in conjunction with the finite element method is a powerful and flexible coil design approach with the potential to incorporate complex coil geometries, inhomogeneous media, and transient current excitation

Published in:

IEEE Transactions on Magnetics  (Volume:34 ,  Issue: 3 )