By Topic

Optical flow estimation and moving object segmentation based on median radial basis function network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bors, A.G. ; Dept. of Inf., Thessaloniki Univ., Greece ; Pitas, I.

Various approaches have been proposed for simultaneous optical flow estimation and segmentation in image sequences. In this study, the moving scene is decomposed into different regions with respect to their motion, by means of a pattern recognition scheme. The inputs of the proposed scheme are the feature vectors representing still image and motion information. Each class corresponds to a moving object. The classifier employed is the median radial basis function (MRBF) neural network. An error criterion function derived from the probability estimation theory and expressed as a function of the moving scene model is used as the cost function. Each basis function is activated by a certain image region. Marginal median and median of the absolute deviations from the median (MAD) estimators are employed for estimating the basis function parameters. The image regions associated with the basis functions are merged by the output units in order to identify moving objects

Published in:

Image Processing, IEEE Transactions on  (Volume:7 ,  Issue: 5 )