By Topic

Optimal construction of subband coders using Lloyd-Max quantizers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Strintzis, M.G. ; Dept. of Electr. & Comput. Eng., Thessaloniki Univ., Greece ; Tzovaras, D.

A new method is presented for the analysis of the effects of Lloyd-Max quantization in subband filterbanks and for the optimal design of such filterbanks. A rigorous statistical model of a vector Lloyd-Max quantizer is established first, consisting of a linear time-invariant filter followed by additive noise uncorrelated/with the input. On the basis of this model, an expression for this variance of the error of a subband coder using Lloyd-Max quantizers is explicitly determined. Given analysis filters that statistically separate the subbands, it is shown that this variance is minimized if the synthesis filters are chosen, which mould achieve perfect reconstruction in lossless coding. The globally optimum of such a filterbank, minimizing the coder error variance, is further obtained by proper choice of its analysis filters. An alternative design method is also evaluated and optimized. In this, the errors correlated with the signal are set to zero, leaving a random error residue uncorrelated with the signal. This design method is optimized by choosing the analysis filters so as to minimize the random error variance. The results are evaluated experimentally in the realistic setting of a logarithmically split subband image coding scheme

Published in:

Image Processing, IEEE Transactions on  (Volume:7 ,  Issue: 5 )