By Topic

A robust dissimilarity representation for writer-independent signature modelling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Swanepoel, J. ; Dept. of Math. Sci., Stellenbosch Univ., Stellenbosch, South Africa ; Coetzer, J.

In this study, the authors present a novel dissimilarity-based signature modelling framework for writer-independent off-line signature verification. The proposed framework utilises a discrete Radon transform and a dynamic time warping algorithm for writer-independent signature representation in dissimilarity space, and a writer-specific strategy for dissimilarity normalisation. A discriminative classifier, either a discriminant function or a support vector machine, is utilised for verification purposes. Both linear and non-linear decision boundaries are considered. The authors show that the novel techniques presented in this study provide an improved platform for writer-independent signature modelling. When evaluated on Dolfing's data set, a signature database that contains 1530 genuine signatures and 3000 amateur skilled forgeries, the systems presented in this study outperform all previous systems also evaluated on this data set.

Published in:

Biometrics, IET  (Volume:2 ,  Issue: 4 )