By Topic

Competitive analysis of caching in distributed databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
O. Wolfson ; Dept. of Electr. Eng. & Comput. Sci., Illinois Univ., Chicago, IL, USA ; Yixiu Huang

This paper makes two contributions. First, we introduce a model for evaluating the performance of data allocation and replication algorithms in distributed databases. The model is comprehensive in the sense that it accounts for I/O cost, for communication cost, and, because of reliability considerations, for limits on the minimum number of copies of the object. The model captures existing replica-management algorithms, such as read-one-write-all, quorum-consensus, etc. These algorithms are static in the sense that, in the absence of failures, the copies of each object are allocated to a fixed set of processors. In modern distributed databases, particularly in mobile computing environments, processors will dynamically store objects in their local database and will relinquish them. Therefore, as a second contribution of this paper, we introduce an algorithm for automatic dynamic allocation of replicas to processors. Then, using the new model, we compare the performance of the traditional read-one-write-all static allocation algorithm to the performance of the dynamic allocation algorithm. As a result, we obtain the relationship between the communication cost and I/O cost for which static allocation is superior to dynamic allocation, and the relationships for which dynamic allocation is superior

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:9 ,  Issue: 4 )