By Topic

Stereo matching as a nearest-neighbor problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
C. Tomasi ; Dept. of Comput. Sci., Stanford Univ., CA, USA ; R. Manduchi

We propose a representation of images, called intrinsic curves, that transforms stereo matching from a search problem into a nearest-neighbor problem. Intrinsic curves are the paths that a set of local image descriptors trace as an image scanline is traversed from left to right. Intrinsic curves are ideally invariant with respect to disparity. Stereo correspondence then becomes a trivial lookup problem in the ideal case. We also show how to use intrinsic curves to match real images in the presence of noise, brightness bias, contrast fluctuations, moderate geometric distortion, image ambiguity, and occlusions. In this case, matching becomes a nearest-neighbor problem, even for very large disparity values

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:20 ,  Issue: 3 )