By Topic

Multispectral random field models for synthesis and analysis of color images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bennett, J. ; Dept. of Electr. Eng., Southern Methodist Univ., Dallas, TX, USA ; Khotanzad, A.

Multispectral extensions to the traditional gray level simultaneous autoregressive (SAR) and Markov random field (MRF) models are considered. Furthermore, a new image model is proposed, the pseudo-Markov model, which retains the characteristics of the multispectral Markov model, yet admits to a simplified parameter estimation method. These models are well-suited to analysis and modeling of color images. For each model considered, procedures are developed for parameter estimation and image synthesis. Experimental results, based on known image models and natural texture samples, substantiate the validity of thee results

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:20 ,  Issue: 3 )