By Topic

Adaptive Consensus of Multi-Agent Systems With Unknown Identical Control Directions Based on A Novel Nussbaum-Type Function

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Weisheng Chen ; Sch. of Autom. & Electr. Eng., Univ. of Sci. & Technol. Beijing, Beijing, China ; Xiaobo Li ; Wei Ren ; Changyun Wen

This note addresses the adaptive consensus problem of first-order and second-order linearly parameterized multi-agent systems with unknown identical control directions. First, we propose a new Nussbaum-type function based on which a key lemma is established. The lemma plays an important role in analyzing the consensus of the closed-loop multi-agent systems. Second, the Nussbaum-type function is used to design adaptive control laws for first-order and second-order linearly parameterized multi-agent systems so that each agent seeks for the unknown control direction adaptively and cooperatively. Then, under the assumption that the interconnection topology is undirected and connected, it is proved that the first-order and second-order multi-agent systems can achieve consensus by choosing proper design parameters. Two simulation examples are given to illustrate the effectiveness of the proposed control laws.

Published in:

Automatic Control, IEEE Transactions on  (Volume:59 ,  Issue: 7 )