By Topic

Minimum-Variance Importance-Sampling Bernoulli Estimator for Fast Simulation of Linear Block Codes over Binary Symmetric Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gianmarco Romano ; Dept. of Ind. & Inf. Eng., Second Univ. of Naples, Aversa, Italy ; Domenico Ciuonzo

In this paper the choice of the Bernoulli distribution as biased distribution for importance sampling (IS) Monte-Carlo (MC) simulation of linear block codes over binary symmetric channels (BSCs) is studied. Based on the analytical derivation of the optimal IS Bernoulli distribution, with explicit calculation of the variance of the corresponding IS estimator, two novel algorithms for fast-simulation of linear block codes are proposed. For sufficiently high signal-to-noise ratios (SNRs) one of the proposed algorithm is SNR-invariant, i.e. the IS estimator does not depend on the cross-over probability of the channel. Also, the proposed algorithms are shown to be suitable for the estimation of the error-correcting capability of the code and the decoder. Finally, the effectiveness of the algorithms is confirmed through simulation results in comparison to standard Monte Carlo method.

Published in:

IEEE Transactions on Wireless Communications  (Volume:13 ,  Issue: 1 )