Cart (Loading....) | Create Account
Close category search window
 

Change Their Perception: RGB-D for 3-D Modeling and Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaofeng Ren ; Amazon.com, Seattle, WA, USA ; Fox, D. ; Konolige, K.

RGB-D cameras, such as Microsoft Kinect, are active sensors that provide high-resolution dense color and depth information at real-time frame rates. The wide availability of affordable RGB-D cameras is causing a revolution in perception and changing the landscape of robotics and related fields. RGB-D perception has been the focus of a great deal of attention and many research efforts by various fields in the last three years. In this article, we summarize and discuss our ongoing research on the promising uses of RGB-D in three-dimensional (3-D) mapping and 3-D recognition. Combining the strengths of optical cameras and laser rangefinders, the joint use of color and depth in RGB-D sensing makes visual perception more robust and efficient, leading to practical systems that build detailed 3-D models of large indoor spaces, as well as systems that reliably recognize everyday objects in complex scenes. RGB-D perception is yet a burgeoning technology: a rapidly growing number of research projects are being conducted on or using RGB-D perception while RGB-D hardware quickly improves. We believe that RGB-D perception will be on the center stage of perception and, by making robots see much better than before, will enable a variety of perception-based research and applications.

Published in:

Robotics & Automation Magazine, IEEE  (Volume:20 ,  Issue: 4 )

Date of Publication:

Dec. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.