By Topic

Integrated Optical E -Field Sensor for Intense Nanosecond Electromagnetic Pulse Measurement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jiahong Zhang ; Sch. of Commun. & Inf. Eng., Univ. of Electron. Sci. & Technol. of China, Chengdu, China ; Fushen Chen ; Bao Sun

A lithium niobate (LiNbO3)-based integrated optical E-field sensor utilizing Mach-Zehnder optical waveguide interferometer and bow-tie antenna has been designed and fabricated for the detection of nanosecond intense pulsed electric field. Experimental data demonstrate that the average rise time, fall time, and pulsewidth of the input/output electromagnetic pulse (EMP) are 1.31/1.28, 3.63/3.61, and 34.19/34.25 ns, respectively. Correspondingly, the relative errors are 2.3%, 0.6%, and 0.2%, respectively. In addition, the input/output of the sensor system shows a linear relationship as the correlation coefficient between measured and fitting is 0.9991. The minimum and maximum measured EMP fields are approximately equal to 3 and 50 kV/m, respectively.

Published in:

Photonics Technology Letters, IEEE  (Volume:26 ,  Issue: 3 )