By Topic

Time-Domain Adaptive Decision-Directed Channel Equalizer for RGI-DP-CO-OFDM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiang Li ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Wen-De Zhong ; Alphones, A. ; Changyuan Yu

We propose an efficient time-domain adaptive decision-directed channel equalizer (TD-ADDCE) for reduced-guard-interval dual-polarization coherent optical orthogonal frequency-division-multiplexing (RGI-DP-CO-OFDM) transmission systems. TD-ADDCE estimates the phase noise in a decision-directed scheme by extracting and averaging the phase drift of OFDM subcarriers. It updates the channel state information (CSI) using the decision data and previous estimated CSI in time domain on a symbol-by-symbol basis. In addition, TD-ADDCE can perform efficiently without any matrix inversion. We numerically compare the performance of TD-ADDCE with frequency domain ADDCE (FD-ADDCE) for a 112-Gb/s RGI-DP-CO-OFDM system at laser linewidth of 100 kHz. The simulation results show that TD-ADDCE attains a superior performance than FD-ADDCE. At a forward error correction threshold of 38×10-3, TD-ADDCE can increase the maximum transmission reach by ~ 29% as compared with FD-ADDCE. We also show that only small additional computational efforts are required for TD-ADDCE as compared with FD-ADDCE.

Published in:

Photonics Technology Letters, IEEE  (Volume:26 ,  Issue: 3 )