By Topic

Classification and Boosting with Multiple Collaborative Representations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yuejie Chi ; Dept. of Electr. & Comput. Eng. & Biomed. Inf., Ohio State Univ., Columbus, OH, USA ; Porikli, F.

Recent advances have shown a great potential to explore collaborative representations of test samples in a dictionary composed of training samples from all classes in multi-class recognition including sparse representations. In this paper, we present two multi-class classification algorithms that make use of multiple collaborative representations in their formulations, and demonstrate performance gain of exploring this extra degree of freedom. We first present the Collaborative Representation Optimized Classifier (CROC), which strikes a balance between the nearest-subspace classifier, which assigns a test sample to the class that minimizes the distance between the sample and its principal projection in the selected class, and a Collaborative Representation based Classifier (CRC), which assigns a test sample to the class that minimizes the distance between the sample and its collaborative components. Several well-known classifiers become special cases of CROC under different regularization parameters. We show classification performance can be improved by optimally tuning the regularization parameter through cross validation. We then propose the Collaborative Representation based Boosting (CRBoosting) algorithm, which generalizes the CROC to incorporate multiple collaborative representations. Extensive numerical examples are provided with performance comparisons of different choices of collaborative representations, in particular when the test sample is available via compressive measurements.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:36 ,  Issue: 8 )
Biometrics Compendium, IEEE
RFIC Virtual Journal, IEEE
RFID Virtual Journal, IEEE