Cart (Loading....) | Create Account
Close category search window
 

Large Discriminative Structured Set Prediction Modeling With Max-Margin Markov Network for Lossless Image Coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wenrui Dai ; Dept. of Electron. Eng., Shanghai Jiao Tong Univ., Shanghai, China ; Hongkai Xiong ; Jia Wang ; Zheng, Y.F.

Inherent statistical correlation for context-based prediction and structural interdependencies for local coherence is not fully exploited in existing lossless image coding schemes. This paper proposes a novel prediction model where the optimal correlated prediction for a set of pixels is obtained in the sense of the least code length. It not only exploits the spatial statistical correlations for the optimal prediction directly based on 2D contexts, but also formulates the data-driven structural interdependencies to make the prediction error coherent with the underlying probability distribution for coding. Under the joint constraints for local coherence, max-margin Markov networks are incorporated to combine support vector machines structurally to make max-margin estimation for a correlated region. Specifically, it aims to produce multiple predictions in the blocks with the model parameters learned in such a way that the distinction between the actual pixel and all possible estimations is maximized. It is proved that, with the growth of sample size, the prediction error is asymptotically upper bounded by the training error under the decomposable loss function. Incorporated into the lossless image coding framework, the proposed model outperforms most prediction schemes reported.

Published in:

Image Processing, IEEE Transactions on  (Volume:23 ,  Issue: 2 )

Date of Publication:

Feb. 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.