By Topic

Application of Expurgated PPM to Indoor Visible Light Communications—Part I: Single-User Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mohammad Noshad ; Charles L. Brown Dept. of Electr. & Comput. Eng., Univ. of Virginia Charlottesville, Charlottesville, VA, USA ; Maïté Brandt-Pearce

Visible light communications (VLC) in indoor environments suffer from the limited bandwidth of LEDs as well as from the inter-symbol interference (ISI) imposed by multipath. In this work, transmission schemes to improve the performance of indoor optical wireless communication (OWC) systems are introduced. Expurgated pulse-position modulation (EPPM) is proposed for this application since it can provide a wide range of peak to average power ratios (PAPR) needed for dimming of the indoor illumination. A correlation decoder used at the receiver is shown to be optimal for indoor VLC systems, which are shot noise and background-light limited. Interleaving applied on EPPM in order to decrease the ISI effect in dispersive VLC channels can significantly decrease the error probability. The proposed interleaving technique makes EPPM a better modulation option compared to PPM for VLC systems or any other dispersive OWC system. An overlapped EPPM pulse technique is proposed to increase the transmission rate when bandwidth-limited white LEDs are used as sources.

Published in:

Journal of Lightwave Technology  (Volume:32 ,  Issue: 5 )