By Topic

An Accurate Stack Memory Abstraction and Symbolic Analysis Framework for Executables

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kapil Anand ; Univ. of Maryland, College Park, MD, USA ; Khaled Elwazeer ; Aparna Kotha ; Matthew Smithson
more authors

This paper makes two contributions regarding reverse engineering of executables. First, techniques are presented for recovering a precise and correct stack memory model in executables in presence of executable-specific artifacts such as indirect control transfers. Next, the enhanced memory model is employed to define a novel symbolic analysis framework for executables that can perform the same types of program analysis as source-level tools. Frameworks hitherto fail to simultaneously maintain the properties of correct representation and precise memory model and ignore memory-allocated variables while defining symbolic analysis mechanisms. Our methods do not use symbolic, relocation, or debug information, which are usually absent in deployed binaries. We describe our framework, highlighting the novel intellectual contributions of our approach, and demonstrate its efficacy and robustness by applying it to various traditional analyses, including identifying information flow vulnerabilities in five real-world programs.

Published in:

Software Maintenance (ICSM), 2013 29th IEEE International Conference on

Date of Conference:

22-28 Sept. 2013