By Topic

A Battery-Assisted Sensor-Enhanced RFID Tag Enabling Heterogeneous Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Danilo De Donno ; Dept. of Innovation Eng., Univ. of Salento, Lecce, Italy ; Luca Catarinucci ; Luciano Tarricone

This paper presents the design, realization, and experimental validation of a battery-assisted radio frequency identification (RFID) tag with sensing and computing capabilities conceived to explore heterogeneous RFID-based sensor network applications. The tag (hereafter called mote) features an ultra-low-power ferroelectric random-access-memory microcontroller, a LED, temperature and light sensors, three-axis accelerometer, non-volatile storage, and a new-generation I2C-RFID chip for communication with standard UHF EPCglobal Class-1 Generation-2 readers. A preliminary RFID mote prototype, fabricated on a printed circuit board using low-cost discrete components and equipped with a small 225-mAh coin battery, provides an estimated lifetime of 3 years when sensing and computing tasks are performed every 30 s. In addition, the reliable RFID communication range up to 22 m achieved in an indoor scenario represents, to the best of our knowledge, the longest distance ever reported for similar sensor-enhanced RFID tags.

Published in:

IEEE Sensors Journal  (Volume:14 ,  Issue: 4 )
IEEE RFID Virtual Journal