By Topic

Assimilation of MODIS Chlorophyll-a Data Into a Coupled Hydrodynamic-Biological Model of Taihu Lake

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lin Qi ; State Key Lab. of Lake Sci. & Environ., Nanjing Inst. of Geogr. & Limnology, Nanjing, China ; Ronghua Ma ; Weiping Hu ; Loiselle, S.A.

MODIS chlorophyll-a concentration (Chla) data were assimilated into a coupled hydrodynamic-biological model using an Optimal Interpolation method. Simulations were conducted using MODIS data covering Taihu Lake in May 2009, when algal blooms typically begin to occur. The results of the assimilation approach showed improvements in the estimation of Chla distributions in spatial coherency and temporal continuity. Bias of assimilation (model run after assimilation) was 5.1%, with a RMSE of 49.7%. In comparison, the free run (model run without assimilation) had a bias of -34.9% and RMSE of 176.5%. In situ data used for comparison showed reduced RMSE and the Bias for assimilation. Two sensitivity experiments were used to determine the suitable correlation length scale with respect to observation data accuracy. The result showed that 500m is the optimum scale to construct the background error covariance matrix. The sensitivity experiment of observational data accuracy also showed that more accurate observation data allowed for better assimilation results.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:7 ,  Issue: 5 )