Cart (Loading....) | Create Account
Close category search window
 

Trelliscope: A system for detailed visualization in the deep analysis of large complex data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Trelliscope emanates from the Trellis Display framework for visualization and the Divide and Recombine (D&R) approach to analyzing large complex data. In Trellis, the data are broken up into subsets, a visualization method is applied to each subset, and the display result is an array of panels, one per subset. This is a powerful framework for visualization of data, both small and large. In D&R, the data are broken up into subsets, and any analytic method from statistics and machine learning is applied to each subset independently. Then the outputs are recombined. This provides not only a powerful framework for analysis, but also feasible and practical computations using distributed computational facilities. It enables deep analysis of the data: study of both data summaries as well as the detailed data at their finest granularity. This is critical to full understanding of the data. It also enables the analyst to program using an interactive high-level language for data analysis such as R, which allows the analyst to focus more on the data and less on code. In this paper we introduce Trelliscope, a system that scales Trellis to large complex data. It provides a way to create displays with a very large number of panels and an interactive viewer that allows the analyst to sort, filter, and sample the panels in a meaningful way. We discuss the underlying principles, design, and scalable architecture of Trelliscope, and illustrate its use on three analysis projects in proteomics, high intensity physics, and power systems engineering.

Published in:

Large-Scale Data Analysis and Visualization (LDAV), 2013 IEEE Symposium on

Date of Conference:

13-14 Oct. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.